
G-Core Web API
Documentation
Version: 2.0

04.01.2024

Table Of Contents
About This Documentation 4
Legal Notice 5
About the Web API 6
Installation 7

System Requirements 7
Install the Web API 7

Licensing 8
Upgrade 1.5.x to 2.0 9
HTTPS Certificate 10

Use of Let’s Encrypt (ACME Protocol) 10
Network Configuration 10
Let’s Encrypt Configuration 11
Use a Certificate 13
Further Information 13

Local Port Forwarding 13
DynDNS 14
Fritz Box Users 14

Why Are HTTPS Certificates Important? 14
Settings 15

Connection 15
Auto Login 15

Access the Web API 16
HTTPS REST API 16
WebSocket API 16
Authentication 16

Authentication in Swagger 17
Authentication of the WebSocket API 17

Working with the Web API 19
JavaScript WebSocket Example 19
Parameter "Channel" 19
G-Core Actions Reference 21

RTSP 22
Use RTSP Streaming 22

2

RTSP Server 22
Encryption the RTSP Stream 22
Authentication 22
Recorded and Live Channel 23

Streaming 23
Performance 24

Specifications 24
Test Results 24

Service Log Files 26

3

About This Documentation
Current software version: G-Core Web API 2.0.

4

ABOUT THIS DOCUMENTATION

Legal Notice
This documentation may not be copied, translated or converted to a machine-
readable form, whether in whole or in part, without prior permission.

GEUTEBRÜCK GmbH cannot guarantee the correctness of any information
provided in this documentation, nor for the software or the information it con-
tains. Any suggested guarantee, assurance of marketable quality or suitability for a
specific purpose of the documentation, the software or other information is
hereby explicitly rejected.

Under no circumstances is GEUTEBRÜCK GmbH liable for direct or indirect sub-
sequent damage or for special subsequent damage resulting from or in asso-
ciation with this documentation, regardless of whether this arises as a result of
illegitimate action, of a contract, or for other reasons in association with this doc-
umentation, the software or of the information contained or used within it.

GEUTEBRÜCK GmbH retains the right to change this documentation or the
information contained within it at any time without warning. The software
described in it is subject to the conditions of a special license contract.

© 2024 GEUTEBRÜCK GmbH. All rights reserved world wide.

5

LEGAL NOTICE

About the Web API
The G-Core Web API allows you to connect to G-Core through a set of platform-
independent APIs. The API is designed to provide easy access to the core G-Core
functions, such as video streams and actions.

The G-Core Web API is especially helpful to connect web-based services with your
G-Core VMS. For native windows applications, you can choose between our C++/C#
based SDK the G-Core Web API.

6

ABOUT THE WEB API

Installation
System Requirements
The following system requirements are required to install the Web API:

 l G-Core 7.0 or newer

 l .NET 6.0 runtime or newer

 l Licenses (see Licensing)

Install the Web API
Install the Web API on the G-Core server.

 1. Run the G-Core_Web_API_installer_xxx.exe file.

 2. Accept the License Agreement and click Next.

 3. In the Ready to Install dialog window click Install.

 4. When the installation is completed, click Finish.

After the installation is completed, a running G-Core Web API service is displayed
in your Windows services.

A self-signed HTTPS certificate is part of the installation. For further information
see HTTPS Certificate.

7

INSTALLATION

Licensing
The G-Core Web API is included free of charge starting with G-Core version 7.0.
The following free licenses are required to use the Web API:

License Description

8.35000
- Web API

Web API license for the basic function
- 1x per server

8.35001
- Web API Metadata

Web API Metadata license for metadata access (PLC
endpoint)
- 1x per server

8.35002
- Web
API ChannelConnect

Web API ChannelConnect license for streaming chan-
nel access
- 1x per channel

All current and new licenses are equipped with the necessary
licenses. If you have a dongle without these features, generate a new
license file (*.lic or *.slk) in your license portal or request a license file
at options@geutebrueck.com.

8

LICENSING

mailto:options@geutebrueck.com

Upgrade 1.5.x to 2.0
During the upgrade, the existing appsettings.json is renamed to appsettings-
backup.json. A new appsettings.json is created with the default values.

Adjust your configuration accordingly. Normally, only the G-Core access data
needs to be adjusted if you have not installed the Web API on the same system as
G-Core.

9

UPGRADE 1.5.X TO 2.0

HTTPS Certificate
An HTTPS certificate is required to access the Web API and its built-in API doc-
umentation.

A self-signed certificate is automatically installed and used during installation
(computer certificates). Alternatively, a Let’s Encrypt certificate can be used.

Use of Let’s Encrypt (ACME Protocol)
Let’s Encrypt allows you to manage certificates for a specified domain. Existing cer-
tificates are kept up to date by checking the expiration date and a new certificate
is installed if none exists.

How to use Let’s Encrypt:

 1. Install the Web API.

 2. Configure your network (see Network Configuration).

 3. Edit the Let's Encrypt section in the appsettings.json file (see Let’s
Encrypt Configuration).

 4. Restart the service.

 5. Make sure the Let’s Encrypt certificate is installed.

 6. Add the new certificate to be used to the appsettings.json file (see Use a Cer-
tificate).

 7. Restart the service.

 8. Access the Swagger website via the new domain name to make sure the cer-
tificate is used (see HTTPS REST API).

Network Configuration
To create and manage a TLS certificate for a domain, you must configure your net-
work correctly. The IPv4 listener of the Let’s Encrypt module responds to port
13020. The service performs an HTTP-01 challenge to validate the certificate
request.

10

HTTPS CERTIFICATE

The HTTP-01 challenge can only be performed on port 80. You must therefore con-
figure port forwarding on your internet router / firewall from port 80 to the
internal port 13020 of the Web API server.

The server must open port 13020 for this communication.

Let’s Encrypt Configuration
To activate the Let’s Encrypt module, you must configure the appsettings.json file.

Configure the LetsEncrypt section and set the active parameter to true. An
example can look like this:

"LetsEncrypt": {
 "active": true,
 "staging": false,
 "user": "anybody.surname@company.com",
 "domain": "sample.dns.net",
 "chronSchedule": "0 0 * * * ?",
 "renewbeforeexpireddays": 30
 },

You can configure the following parameters in the LetsEncrypt section of the
appsettings.json:

Setting Description

active To activate the Let’s Encrypt module (ACME mod-
ule), set this parameter to true.
To use the generated certificate, change the sub-
ject of HttpsInlineCertStore to the domain
name after the certificate has been successfully
generated.

staging Let’s Encrypt provides a staging environment for
testing purposes. If you set this parameter to true,
the service communicates with this staging envir-
onment.

Do not use this parameter to generate
certificates. If you use the staging envir-

11

HTTPS CERTIFICATE

Setting Description

onment, an invalid certificate will be
created but not installed.

To request a valid certificate, set the parameter to
false.

Note that the number of certificates for
a domain name is limited by Let’s
Encrypt.

user The e-mail address of the user requesting a cer-
tificate. The module either creates a new account
or automatically uses the existing one. The e-mail
address is used by the Let’s Encrypt service.
For further information, see: https://-
letsencrypt.org/docs/expiration-emails/

domain The certificate managed by the service is issued for
the specified domain. It is also the subject of the
certificate when it is installed and is used to
identify the certificates in the update routine of the
module.

chronSchedule The service checks the validity of the certificate
periodically. The chronSchedule parameter
defines the time period in which the checks are
performed. By default, a check is performed hourly.
When the service is started, the certificate is
checked once and created or updated if necessary.

renewbeforeexpireddays The renewbeforeexpireddays parameter determ-
ines how many days before expiration the cer-
tificate is automatically renewed.

Use the staging environment of Let’s Encrypt to ensure that all other
settings and the network configuration is correct. After that, you can
safely deactivate the staging environment. For more information on
using Let’s Encrypt, see the Web API log files (see Service Log Files).

12

HTTPS CERTIFICATE

https://letsencrypt.org/docs/expiration-emails/
https://letsencrypt.org/docs/expiration-emails/

Use a Certificate
To select a certificate, configure the HttpsInlineCertStore section in the appset-
tings.json file. The service loads the certificate once on its starts. To use the cer-
tificate, set the Subject parameter to the subject of the certificate. The default
setting is to load the self-signed certificate.

First generate a certificate with Let’s Encrypt and then adjust the
Subject for HttpsInlineCertStore. As long as no certificate is
found, the Web API service will not start.

The Let’s Encrypt module creates a certificate for the domain name of your sys-
tem. This domain is also the subject of the generated certificate.

Make sure that the Url parameter is not configured for a specific domain. Use
https://*:13333 or https://0.0.0.0:13333 (port 13333 can be changed to any
other port) to listen to any domain of the server. The service is accessible locally
with localhost (127.0.0.1) or externally via the configured domain name.

 "HttpsInlineCertStore": {
 "Url": "https://*:13333",
 "Certificate": {
 "Subject": "sample.dns.net",
 "Store": "My",
 "Location": "LocalMachine"
 }
 },

Further Information
Local Port Forwarding
If you need a local port forwarding on the system on which the Web API is
installed, use the following cmd command:

netsh interface portproxy add v4tov4 listenport=80 listen-
address=0.0.0.0 connectport=13020 connectaddress=127.0.0.1

13

HTTPS CERTIFICATE

DynDNS
You can use a DynDNS service to get a domain name for your dial-up connections.
Most routers support multiple DnyDNS services. DuckDNS.org, for example, is a
free and easy-to-use service that you can use for this.

Fritz Box Users
If you activate the MyFritz function of your Fritz!Box, the Fritz!Box has a built-in
domain name. This gives you a domain name for your dial-up connection such as:
1234abcd.myfritz.net.

To be able to use this domain name, you must deactivate IPv6 in the internet con-
nection. Otherwise, the port forwarding from port 80 to IPv4 will not work and will
always redirect you to the login page of the Fritz Box.

Why Are HTTPS Certificates Important?
Creating an SSL certificate for an HTTPS connection helps ensure the security and
privacy of your content and complies with the cyber security standards.

Complete Encryption of the Transmitted Data

An HTTPS connection with SSL certificate provides an additional level of security
for your G-Core system and for the operator. The SSL certificate completely
encrypts the data transmitted via the internet to protect sensitive information
from interception and manipulation by third parties.

Secure Connection in Web Browsers

HTTPS connections are identified as insecure in almost all web browsers. The Fire-
fox web browser even offers the extended security function "HTTPS-Only Mode". In
future, HTTP connections will tend to no longer be permitted or access will
become very difficult.

Personal Responsibility and Control of Your Content

By generating your own SSL certificates, you retain personal responsibility and con-
trol of your content. This ensure that your content is transmitted securely and
according to your specific requirements.

14

HTTPS CERTIFICATE

Settings
The main settings for the G-Core Web API service can be found in the appset-
tings.json file in the Web API installation folder (C:\Program
Files\Geutebrueck\GCore Web API).

Connection

Name Type Description Example

Connection:Address string G-Core server IP address. 127.0.0.1

Connection:username string G-Core username to
authenticate to the Web
API service.
If empty, the auto login is
used.

sysadmin

Connection:password string G-Core password to
authenticate to the Web
API service.
If empty, the auto login is
used.

masterkey

Auto Login
If the username and password are empty, the G-Core Web API service uses the
auto login feature to connect to the G-Core server. The auto login only works with
a G-Core installed on the same server as the Web API.

15

SETTINGS

Access the Web API
The Web API is divided into two main parts:

 l The HTTPS REST API is used for requests like authentication or resources.

 l The WebSocket API is used for connected requests like video streaming or
PLC data.

HTTPS REST API
The HTTPS REST API is documented with Swagger. You can access the doc-
umentation via https://<server-ip>:13333/swagger/index.html (for
example: https://127.0.0.1:13333/swagger/index.html) in any modern
browser (Chrome, Safari, Firefox, and Edge).

The G-Core Web API is installed as a service and contains a swagger API where
developer can get the description of the complete interface (https://-
localhost:13333/swagger/index.html).

You can build an HTTP webclient and access these GET and POST commands or
you can build a c# application and use the wrapped HTTP function in a class.

WebSocket API
The WebSocket API is using the WebSocket protocol based on a TCP connection.

The respective WebSocket API documentation can be accessed via the following
URLs:

 l Streaming: https://<server-ip>:13333/a-
syncapi/media/ui/index.html

 l PLC: https://<server-ip>:13333/asyncapi/plc/ui/index.html

On these pages you will find the necessary documentation for using the
WebSocket API endpoints.

Authentication
Use the authentication endpoint /api/1/Login to authenticate with the G-Core Web
API. The G-Core username and password are used for authentication.

16

ACCESS THE WEB API

Authentication in Swagger
You can perform the authentication directly in the Swagger UI. The result is a
tuple, which you should subsequently use in any other requests to be authen-
ticated. The tuple consists of an AccessToken and a RefreshToken.

Token Valitity Use

AccessToken Valid for a period of 15
minutes.

For HTTP requests, the token can
be used in the Authorization
header.
For example: "Authorization:
Bearer <AccessToken>"

RefreshToken Valid for 7 days.

Each
RefreshToken
is only valid
once.

The token can be used to acquire
new access tokens via the
/api/1/ RefreshLogin endpoint,
which also returns a tuple of
AccessToken and RefreshToken.

The authentication endpoint /api/1/Login is rate limited to a certain
number of requests in the default settings. Per client IP there are 100
requests per 10 Minutes allowed. This setting can be configured in
the appsettings.json file in the IpRateLimiting section.

In Swagger, enter the token to perform the authentication:

 1. In Swagger, click Authorize in the top right corner.

 2. Enter the word Bearer followed by a space and the token you received from
the login endpoint (Bearer <AccessToken>).

 3. Then you can try any other endpoint in Swagger.

→ This authentication is also required for the WebSocket API.

Authentication of the WebSocket API
There are two supported ways to authenticate the WebSocket API:

17

ACCESS THE WEB API

 l You can set the token in an authorization cookie.

ClientWebSocket _webSocket = new ClientWebSocket();
var token = "...";
_webSocket.Options.Cookies = new System.Net.CookieContainer();
_webSocket.Options.Cookies.Add(new Uri(String.Format("ws://
{0}/", host)), new System.Net.Cookie("Authorization", token));
_webSocket.ConnectAsync(
 new Uri(String.Format("ws://{0}/ap-
i/1/stream/video?MediaChannelIdentifier={1}", host, medi-
aChannel)), cancellationToken).Wait();

 l You can set the token as in the protocol header.

this.socket = new WebSocket(url, accessToken);

18

ACCESS THE WEB API

Working with the Web API
JavaScript WebSocket Example
This opens a new stream with the media channel ID number 1.

const websocketAddress =
 "ws://<server ip>:13332/ap-
i/1/stream/video?MediaChannelIdentifier=1";
let websocket = new Websocket(websocketAddress);

Parameter "Channel"
You can trigger actions in G-Core via the Web API.

The actions can be configured in the Swagger user interface. Many actions are
assigned to a media channel. This assignment is made via the
"channel" parameter:

You must specify one of the following values for the "channel" parameter:

Value Description

"channelID" The local number of the media channel.

19

WORKING WITH THE WEB API

Value Description

"channelName" The name of the channel. This must match exactly to ensure
assignment.

"globalNo" The global number of the media channel.

Enter only one value for the parameter. If you specify more than one
value, G-Core cannot find the assigned media channel and the
action will not be triggered.

Example

In this example, the value "channelID" is specified. The other values

must be removed as they must not be specified.

20

WORKING WITH THE WEB API

G-Core Actions Reference
In this PDF document you will find a complete definition of all G-Core actions and
parameters: G-Core Actions Reference.

21

WORKING WITH THE WEB API

G-Core Actions Reference.pdf

RTSP
Use RTSP Streaming
To use RTSP streaming, add the following section to the appsettings.json file
(C:\Program Files\Geutebrueck\GCore Web API\appsettings.json).

You can use these parameters to configure RTSP streaming (see RTSP Server) and
the streaming of recording gaps (see Streaming).

"Streaming": {
 "DBPlaybackMaximumGapMs": 5000,
 "DBPlaybackGapRecoverMs": 40
 },
 "RTSPServer": {
 "EnableRTSP": true,
 "ListenV6": "[::]",
 "ListenV4": "0.0.0.0",
 "ListenPort": 554
 //,"LogStreamFilePath": "c:\\temp"
 },

RTSP Server
To enable RTSP streaming, the EnableRTSP parameter must be set to true.

Encryption the RTSP Stream
You can encrypt the RTSP stream with a VPN connection between the client and
the Web API.

If you are only using the RTSP stream, an SSL tunnel is also sufficient.

Authentication
The client sends the user name and password to the G-Core server from which the
client expects to receive the stream. These credentials are then used to authen-
ticate the user for the stream. If the authentication fails, an RTSP 401 response is
sent.

Only basic authentication is supported.

22

RTSP

IMPORTANT: This type of user authentication is not secure and is not
recommended.

Recorded and Live Channel
The Web API distinguishes between the playback of recorded and live channels.

Recorded Channel:

When a specified time frame is called, the Web API checks whether the requested
time frame exists and plays it at the normal 1.0x speed.

Example

rtsp://localhost?MediaChannelIdentifier=1&Start=2022-01-

31T13:05:04.447&End=2022-01-31T14:05:04.447

Start= Start time in the format year-month-day T hours : minutes

: seconds.

End= End time in the format year-month-day T hours : minutes :

seconds.

Live Channel:

If neither a start time nor an end time is requested, the Web API plays the reques-
ted media channel as fast as possible and equivalent to the live view.

Example

rtsp://localhost?MediaChannelIdentifier=1

Streaming
If there are gaps in the database, these are skipped during playback and the next
available image is displayed. You can configure the playback of recording gaps in
the Streaming section.

Parameter Description

DBPlaybackMaximumGapMs Defines in milliseconds how large a gap is that

23

RTSP

Parameter Description

is not considered a gap.

DBPlaybackGapRecoverMs Defines in milliseconds after which the next
available image is played.

Performance
To test the limitations of the G-Core Web SDK and Web API as well as some func-
tionalities, some performance measurements were perfomed.

Specifications
The following specifications we used for the performance measurement:

 l Operating system: Windows 10 x64

 l CPU: Intel i7-7700

 l RAM: 8 GB

Test Results
Scenario: Full HD 12,5 fps / outdoor quite

To make the test results comparable, the duration of each measurement was ~10
mins:

Viewer
Count

CPU Usage Memory Con-
sumption

Test Result

4 ~20% ~45% Passed(stable)

8 ~20% ~60% Passed(stable)

10 ~20% ~80% Passed(stable)

14 ~40% ~70% Passed(stable)

18 ~50% ~80% Failed
(unstable)

24

RTSP

Framerate
We observed that some RTSP clients have problems with very low
frame rates. We therefore recommend using a frame rate of at least
5 FPS.

25

RTSP

Service Log Files
The Web API logs the most important messages to the Windows event log.

A more detailed log file can be found here: %PROGRAMDATA%\Geutebrueck-
\GCoreWebApi\GCoreWebApiLog.log.

All outputs of the service are logged in this file.

26

SERVICE LOG FILES

GEUTEBRÜCK GmbH

Im Nassen 7-9 | D-53578 Windhagen

Tel. +49 (0)2645 137-0 | Fax-999

info@geutebrueck.com

www.geutebrueck.com

Technical alterations reserved.

	About This Documentation
	Legal Notice
	About the Web API
	Installation
	System Requirements
	Install the Web API

	Licensing
	Upgrade 1.5.x to 2.0
	HTTPS Certificate
	Use of Let’s Encrypt (ACME Protocol)
	Network Configuration
	Let’s Encrypt Configuration
	Use a Certificate
	Further Information
	Local Port Forwarding
	DynDNS
	Fritz Box Users

	Why Are HTTPS Certificates Important?

	Settings
	Connection
	Auto Login

	Access the Web API
	HTTPS REST API
	WebSocket API
	Authentication
	Authentication in Swagger
	Authentication of the WebSocket API

	Working with the Web API
	JavaScript WebSocket Example
	Parameter Channel
	G-Core Actions Reference

	RTSP
	Use RTSP Streaming
	RTSP Server
	Encryption the RTSP Stream
	Authentication
	Recorded and Live Channel

	Streaming
	Performance
	Specifications
	Test Results

	Service Log Files

